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Algorithmic predictions are used to make decisions
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https://armman.org/

https://www.theguardian.com/commentisfree/2020/aug/19/its-not-just-a-
levels-algorithms-have-a-nightmarish-new-power-over-our-lives

https://www.wealthfront.com/
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Train ML model to learn  
based on historical data

h*

Goal: incorporate the structure of 
 into dec L( ⋅ , ⋅ )

Folk wisdom: we can make better decisions with 
“less” if we just predict dec(pred)

min
h∈ℋ ∑

(x,y)

L(h(x), y)

Data (x, y)

Demographics

Past test scores


School information

Make decision dec(pred)

h*(Jessie) = 0.85

Predict  
for new  

pred = h*( ̂x)
̂x



Why predict decisions?

Challenges: 
- Lots of decision problems! 
- How to construct good loss functions?
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Goal: design algorithms (loss functions) that 
incorporate decision problem to make “smarter” errors



Outline
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If Pr[pass] < 0.75

If Pr[pass]  0.75≥
min
h∈ℋ ∑

(x,y)

L(h(x), y)

Algorithms making 
predictions

Decision-making with 
predictions in hand



Algorithm design: incorporating decision structure
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min
h∈ℋ ∑

(x,y)

L(h(x), y)

If Pr[pass] < 0.75

If Pr[pass]  0.75≥



What is a decision task: common structure?
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Ranking: 

🧑🦰👩🦱👱 vs 👩🦱🧑🦰👱

https://www.freecodecamp.org/news/chihuahua-or-muffin-my-search-for-the-best-
computer-vision-api-cbda4d6b425d/

Classification:

https://waymo.com/open/challenges/2021/real-time-2d-prediction/#

Segmentation:

Routing:

Today: discrete decisions (FFW NeurIPS 19 JMLR, FFGT ICML 22, FFN COLT 22) 

Continuous decisions (FF NeurIPS 18, FFW NeurIPS 21)

→



Common structure: decision loss matrix 
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Decision loss  easy (relatively) to analyze, but intractable to optimize.ℓ

r = − 1 r = 1

0-
1 

lo
ss

 (r
,-1

)y=1 y=-1

r=1 0 1

r=-1 1 0

ℓ(r, y) = ℓr,y

𝔼Y∼pL(u, Y )

u ∈ ℝ

dec : ℝ → ℛ



Good losses: consistent and convex
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A surrogate loss  and decision  pair  is consistent with respect 
to a decision loss  if minimizing the expected surrogate loss  then 

applying  yields the same decision as minimizing expected  directly

L dec (L, dec)
ℓ L

dec ℓ

Example:  logistic loss, hinge loss, squared loss 
 = sign 

 is 0-1 loss

L
dec

ℓ
Challenge: for a given decision task, design one surrogate loss 

and decision pair that works for all data distributions

u ∈ ℝ

𝔼Y∼ploss(u, Y )



Good losses: consistent and convex
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Convex:  
If decisions are discrete, but  is infinite, what do 

we do in the infinite space in between?
ℝd

ℝ2

Convexity: away from 
the minimizer

Consistency: around 
the minimizer



Our contributions
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Our proposal: a framework to analyze the consistency of piecewise 
linear and convex (PLC) surrogates for discrete decision losses

Introduce the definition of 
embeddings Show embedding  consistency⟹

A much simpler tool for analyzing consistency



Y = 1 Y = -1

Yes 0 1

No 1 0

Hinge loss embeds (twice) 0-1 loss
Decision loss 

ℓ : ℛ × 𝒴 → ℝ+

Surrogate loss 
L : ℝd × 𝒴 → ℝ+
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0 1

1 0

L(u, y)

(no) = -1embedding (yes) = 1embedding

embeds a if there exists an 
…embedding : ℛ → ℝd

1. Loss 
values match

hinge(u, 1) hinge(u, -1)



Hinge loss embeds (twice) 0-1 loss
Decision loss 

ℓ : ℛ × 𝒴 → ℝ+

Surrogate loss 
L : ℝd × 𝒴 → ℝ+
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embeds a if there exists an 
…embedding : ℛ → ℝd

2. Optimal reports 
match on embeddings Y = 1 Y = -1

Yes 0 1

No 1 0

𝔼Y∼pℓ(Yes, Y ) = ∑
y

pyℓ(Yes, y) = 0 × p + (1 − p) × 1 = 1 − p

𝔼Y∼pℓ(No, Y ) = ∑
y

pyℓ(No, y) = 1 × p + 0 × (1 − p) = p

embedding(No) embedding(Yes)

Let  be . Then p Pr[Y = 1] 1 − p = Pr[Y = − 1]

Yes optimal{No optimal{

Yes optimal iff p ≥
1
2



Theorem (FFW19): Every decision 
loss can be embedded by a PLC loss

Theorem (FFW19): Every (PLC) surrogate 
embeds a decision loss

PLC embeddings
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Piecewise linear and 
convex (PLC) surrogate Decision loss

Consistency
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Intuition: PLC surrogates have PLC Bayes risks L : p ↦ inf
u

𝔼Y∼pL(u, Y)

Pr[Y = 1]

𝔼Y∼pL(u, Y )

𝔼Y∼pL(u, Y ) = ∑
y

pyL(u, y) = ∑
y

pycy = ⟨p, c⟩

Theorem (FFW19): Every (PLC) surrogate 
embeds a decision loss

Report u

Expected loss 𝔼Y∼pL(u, Y )
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Pr[Y = 1]

𝔼Y∼pL(u, Y )

Since  is piecewise linear and concave, its hypograph  has finitely many facets.  
For each facet , pick one report  such that  supports  on . 

Add the row  to the decision loss matrix. 

L hypo(L)
F u ⟨u, p⟩ hypo(L) F

{L(u, y) ∣ y ∈ 𝒴}

-1 1

-1 0 2

1 2 0

Discrete report r ∈ ℛ

True outcome y ∈ 𝒴

Is it an embedding? 
Match loss values: by construction ✔ 

Match optimality: Bayes risks match, which means optimality matches ✔

Theorem (FFW19): Every (PLC) surrogate 
embeds a decision loss



Theorem (FFW19): Every decision 
loss can be embedded by a PLC loss

Theorem (FFW19): Every (PLC) surrogate 
embeds a decision loss

PLC embeddings
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Piecewise linear and 
convex (PLC) surrogate Decision loss



Analyzing fixed embeddings
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If Pr[pass] < ??

If Pr[pass]  ??≥
min
h∈ℋ ∑

(x,y)

L(h(x), y)



Analyzing inconsistency of proposed embeddings

Proposed surrogate Embedded loss

Y = 1 Y = -1

Yes 0 2

No 2 0

Y = 1 Y = -1
Yes 0 1

Maybe 1/3 1/3
No 1 0

Desired decision loss

Y = 1 Y = -1

Yes 0 1

No 1 0

Y = 1 Y = -1

Yes 0 1

No 1 0



Analyzing (in)consistency for common decision tasks
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http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

y=1 y=2 y = 3

{1,2} 0 0 1

{1,3} 0 1 0

{2,3} 1 0 0

ℓ(r, y) = ℓr,y

and PLC embedding implies consistent (calibrated)But we know top-k is embedded by a PLC surrogate… 🧐

YK ICML 20



Analyzing (in)consistency for common decision tasks

PLC surrogates for top-  prediction (FFGT ICML 22)k

Lovász hinge for structured prediction 
(FFN COLT 22)
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Weston-Watkins hinge embeds the ordered 
partition (WS NeurIPS 20)

SVM generalizations for structured prediction 
(NBR, ICML 20)



Analyzing fixed algorithms: beyond pointwise predictions
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If P(👩🦱, 👨) …?
min
h∈ℋ ∑

(x,y)

L(h(x), y)

If P(👩🦱, 👨) …?

If P(👩🦱, 👨) …?

If P(👩🦱, 👨) …?

👩🦱,👨

Goal: understand how fixed algorithms make 
decisions in various settings

Challenges: 
- Need to codify inherently abstract concepts 
- Limitations on expressing utility



“True probability” Unconstrained 
decision

Constrained  (DP) 
decision

Constrained (FPR) 
decision

0.52 ✅ ✅ ❌

0.49 ❌ ✅ ❌

Sometimes algorithm is fixed
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F23 arXiv

min
prediction

loss(prediction, outcome) s.t.  smallunfairness(prediction, outcome)min
prediction

(1 − λ)loss(prediction, outcome) + λ unfairness(prediction, outcome)

👨💻

👩💻

“True probability” Unconstrained 
decision

Constrained (DP) 
decision

0.7 ✅ ✅

0.73 ✅ ✅



(Reject, Accept)

(Accept, Reject)(Reject, Reject)

How do fairness constraints change decisions?
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(Theorem F23): Decision-making is the same for every distribution iff 
the unfairness metric is “basically the same” as the loss L

F23 arXiv

Pr[Y = 1 ∣ ]👩💻

Pr
[Y

=
1

∣
]
👨💻 (Accept, Accept)



How do fairness constraints change decisions?
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(Theorem F23): Decision-making is the same for every distribution iff 
the unfairness metric is “basically the same” as the loss L

F23 arXiv



Comparing unfairness metrics
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F23 arXiv



Machine Learning/AI Algorithmic Game Theory

Beyond today’s talk: research
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If Pr[pass] < 0.75

If Pr[pass]  0.75≥min
h∈ℋ ∑

(x,y)

L(h(x), y)

Designing objective and decision functions

Holistically analyzing decisions made by fixed algorithms

Convex losses for 
continuous decisions 

FF18 NeurIPS 

Computational challenges 
around loss efficiency

FFW20 COLT, FFW21 

NeurIPS

Learning to cooperate in 
competitive games 


FM20 IEEE ToG

Designing decision functions 
for structured prediction


FFN22 COLT

Bridging Fairness in 
Machine Learning 
and Mechanism 

Design 

FMMPRST21 FAccT

Resource allocation 
with inequality-

averse communities

SFA in submission

Voting algorithms 
with anchoring bias

CF in submission

Robustness of predict-
then-optimize algorithms

JFWSVTT23 GameSec

Impacts of fairness 
constraints in information 

sharing

SFMNRJ23 AAAI
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Beyond research: outreach and 
mentorship

PhD App mentorship

AAAI 2023 invited talk

PhD App mentorship PhD App mentorship

Blah blah blah

PhD App mentorship and general Q+A!

Community engagement lead

Working group on fairness and discrimination co-lead Chair, vice-chair, 


Neural network

Piloting PhD applicant feedback 

program



Optimization design is a value choice, often made 
difficult by computational costs.
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My work designs objectives that aligns with stated 
values and evaluates the consequences of objective 
choice on algorithmic decision-making.  



Future work
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Understand consequences of objective function choice

Understand how to incorporate value choices into algorithm design

Understand advantages and limitations of using “smart” loss functionsIf Pr[pass] < 0.75

If Pr[pass]  0.75≥min
h∈ℋ ∑

(x,y)

L(h(x), y)
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Understand consequences of objective function choice

u ( ) − α Inequality( )

u ( ) − α Inequality( )

u ( ) − α Inequality( )

u ( ) − α Inequality( )

u ( )

u ( )

u ( )

u ( )

Design algorithms to maximize… But what if utilities are actually…?

SFA in submission
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Future work: Understand how to incorporate value choices into algorithm design

https://co-pub.coloradoforestatlas.org/#/
https://csfs.colostate.edu/wp-content/uploads/2020/11/

FINAL2020_FLP_AON-.pdf

min
h∈ℋ ∑

(x,y)

L(h(x), y)
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Future work: Understand advantages and limitationss of using “smart” loss functions

Model size

Training data size

Complexity of 
decision

Don’t need clever 
loss functions!

Clever loss functions 
help a lot



Optimization design is a value choice, often made 
difficult by computational costs.
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Thank you  
www.jessiefin.com

If Pr[pass] < 0.75

If Pr[pass]  0.75≥min
h∈ℋ ∑

(x,y)

L(h(x), y)

https://www.wealthfront.com/Handbook of Computational Social Choice 
BCELP 2016

Collaborations 
with you!



Appendix
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Analyzing fixed algorithms: beyond prediction
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voting rule(votes)

👩🦱

👨

👱

👩🦰

👳

u = (0.3,0.25,0.45)

u = (0.35,0.2,0.45)

u = (0.35,0.15,0.5)

u = (0.8,0.15,0.05)

u = (0.9,0.04,0.06)

Majority vote

Borda vote

Veto vote

CF IJCAI24
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How do algorithmic decisions change when inputs (peoples opinions) shift according to anchored preferences?

https://www.ipsos.com/en-us/trump-leads-republican-
primary-field-biden-leads-democrats

👩🦱
👨
👱

👩🦰
👳

Analyzing fixed algorithms with anchored play

CF in progress



Analyzing fixed algorithms with social play
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(Proposition CF23): Individual votes align more closely with the anchoring point

(Theorem CF23): Borda is more robust to external information than plurality

CF in progress



Why do we need to construct a decision function
Theorem (FFW19): If a PLC surrogates  embeds , there exists a decision function  

such that  is consistent with respect to 
L ℓ dec

(L, dec) ℓ
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embedding
Red Blue Yellow

Red 0 1 1

Blue 1 0 1

Yellow 1 1 0

dec

ℝ2

{red, blue, yellow} → ℝ2 ℝ2 → {red, blue, yellow}

Need  defined over all of dec ℝd



Constructing a consistent decision function
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Theorem (FFW19): If a PLC surrogates  embeds , there exists a decision function  such that 
 is consistent with respect to 

L ℓ dec
(L, dec) ℓ

Consistency focused on approaching the optimum  
Embedding focuses on the exact minimizer

ϵ

{



Dimensional efficiency



Roughly: complexity of gradient computation linear in d

 smaller —> better

L : ℝd → ℝ

d

Most “naive” losses are score-based: d = number of alternatives.
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d = 1 d = 2

 dimensions needed for consistent 
surrogate:  

d

?? ≤ d ≤ n − 1

Stru
ctu

red
 pred

ict
ion: 

n =
2k



Analyzing consistency via embeddings in image segmentation

Future work: trade off consistency for efficiency?
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Note: didn’t construct consistent 
surrogate because of dimension

ℓ(r, y) =
|{i : ri = yi} |

|{i : yi = 1} ∪ {i : ri ≠ yi} |
=

num. correct pixels
num. foreground or incorrect

 pixels:  inconsistentk L : ℝk × 2k → ℝ

 consistentL : ℝ2k × 2k → ℝ

Handcrafted surrogates in the wild: what do they embed? 



Lower bounds on prediction dimension from the property
Convex flats depend on global features of property rather than local to improve lower bounds
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Truncated mean

1 ≤ d ≤ 1 2 ≤ d ≤ log2(n)

High-confidence classification Classification

n − 1 ≤ d ≤ n − 1

FFW COLT 2020 (not embeddings: FFW NeurIPS 2021)



Future work: trading off consistency and efficiency
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d ≤ log2(n) n − 1 ≤ d  and usually makes right 
decision, but not always

d = log2(n)



Future work: When to predict more granular information?
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Access to property value, can (noisily) predict more granular information. How to trade off noise in prediction vs  

Will graduate

Will graduate

Predict, even if noisy



https://csfs.colostate.edu/wp-content/
uploads/2020/11/

Future work: Wildfire risk prediction
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https://co-pub.coloradoforestatlas.org/#/

Knowing how predictions are 
used to prescribe burns, how do 
we design predictive algorithms 
for fire intensity?



Decisions —> Algorithms: Wildfire risk prediction
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https://co-pub.coloradoforestatlas.org/#/

https://csfs.colostate.edu/wp-content/uploads/2020/11/FINAL2020_FLP_AON-.pdf

https://cdphe.colorado.gov/clean-water-gis-maps


