Algorithm design for improved
decision-making

Jessie Finocchiaro



Algorithmic predictions are used to make decisions
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Folk wisdom: we can make better decisions with
“less” if we just predict dec(pred)

Train ML model to learn /i * Predict pred = h™*(X)

based on historical data for new X Make decision dec(pred)

h*(Jessie) = 0.85 v

Demographics
Past test scores
School information

Goal: incorporate the structure of

decinto L( -, )



Why predict decisions?

Goal: design algorithms (loss functions) that

Incorporate decision problem to make “smarter” errors

Student

accepted

Challenges:
- Lots of decision problems!
- How to construct good loss functions?

error(p, p™)

prediction p



Outline

Algorithms making Decision-making with

predictions

predictions in hand
Q If Pr[pass] > 0.75

0 If Pr[pass] < 0.75




Algorithm design: incorporating decision structure

min Y L(h(x),
h%(% (h(x), y)




min E L(h(x >
B ( ( )Y)

0 If Pr[pass] < 0.75

What is a decision task: common structure?

(x,y)
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If Pr[pass] = 0.75

f Pr[pass] < 0.75

Common structure: decision loss matrix

=1 y=-1 [EYNpL(ua Y)

r=1 0 1

dec . R > H

Decision loss £ easy (relatively) to analyze, but intractable to optimize.




Q If Pr[pass] = 0.75
Q If Pr[pass] < 0.75

Good losses: consistent and convex

p ’

3
[EYNploss(u, Y) )

A surrogate loss L and decision dec pair (L, dec) is consistent with respect
to a decision loss ¢ if minimizing the expected surrogate loss L then
applying dec yields the same decision as minimizing expected ¢ directly

Example: L logistic loss, hinge loss, squared loss
dec = sign
£ is 0-1 loss

Challenge: for a given decision task, design one surrogate loss
and decision pair that works for all data distributions



Q If Pr[pass] = 0.75
Q If Pr[pass] < 0.75

Convex:

If decisions are discrete, but Ris infinite, what do
we do in the infinite space in between?

Consistency: around Convexity: away from
the minimizer the minimizer




Our contributions

Our proposal: a framework to analyze the consistency of piecewise
linear and convex (PLC) surrogates for discrete decision losses

Introduce the definition of
embeddings

Show embedding =— consistency

A much simpler tool for analyzing consistency

11



Q If Pr[pass] = 0.75
Q If Pr[pass] < 0.75

Hinge loss embeds (twice) 0-1 loss

Surrogate loss embeds a Decision loss If there exists an
L:RiIXY >R, £ RXY - R, embedding : & — RA...

hinge(u, 1) hinge(u, -1)

Yes 0 1

1. Loss L(u,y)
values match

No 1 0

embedding(no) = -1 embedding(yes) = 1

12



Q If Pr[pass] > 0.75
0 If Pr[pass] < 0.75

Hinge loss embeds (twice) 0-1 loss

Surrogate loss embeds a Decision loss If there exists an
L:RiIXY >R, £ RXY - R, embedding : & — RA...

2. Optimal reports
match on embeddings

Y = -1 No optimal Yes optimal

Let pbe Pr[Y =1].Then1 — p = Pr[Y =

[EYpr(YeS,Y)zZpyf(YeS,y):())(p+(l—p))(1zl_p 1 | s S0 cos o0 os 10 s |

y Yes optimal iff p > 5
[EYpr(NO,Y)=Zpyf(N0,y)=1><p+()><(1—p)=p T T

Y

13 embedding(No) embedding(Yes)



PLC embeddings

Theorem (FFW19): Every (PLC) surrogate

embeds a decision loss
Consistency

Piecewise linear and

convex (PLC) surrogate Decision loss

Theorem (FFW19): Every decision
loss can be embedded by a PLC loss




If Pr[pass] > 0.75

Theorem (FFW19): Every (PLC) surrogate o
embeds a decision loss

Expected loss [EYNpL(u, Y)

Report u ST

*

1 Al Al | T Al Al Al | I Al | I P J
-1.0 -0.5 0.0 0.5 1.0 1.5
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If Pr[pass] > 0.75

Q If Pr[pass] < 0.75

i L(h(x),
g;uzy:) (h(x),y)

embeds a decision loss ~—

Theorem (FFW19): Every (PLC) surrogate

Since L is piecewise linear and concave, its hypograph Aypo(L) has finitely many facets.
For each facet I, pick one report u such that (u, p) supports hypo(L) on F.
Add the row {L(u,y) | y € %} to the decision loss matrix.

True outcome y € %

-1 1
-1 0 2

Discrete report r € A
1 2 0

Is it an embedding?

Match loss values: by construction
Match optimality: Bayes risks match, which means optimality matches




PLC embeddings

Theorem (FFW19): Every (PLC) surrogate
embeds a decision loss

Piecewise linear and

Decision |
convex (PLC) surrogate ecision 10ss

Theorem (FFW19): Every decision
loss can be embedded by a PLC loss




Analyzing fixed embeddings

~~

Q If Pr[pass] > 77
0 If Pr[pass] < 77



/—\

Q If Pr[pass] > ??
Q If Pr[pass] < 77?7

Analyzing inconsistency of proposed er;beddings

Proposed surrogate Embedded loss Desired decision loss
Y=1Y=-1 Y=1Y=-1
\ Yes 0 2 Yes 0 1
s 0 9 2

: \/ No 0 No 1 0

Y=1Y=-1 Y=1Y=-1
Yes 0 1
Maybe 1/3 1/3
No 1 0 No 1 0




O Q If Pr[pass] > 77?7
nin ) L(h(x),vy)

| | Q If Pripass] < 72
Analyzing (in)consistency for common decision tasks

universities in georgia

3
Images Maps erspectives or masters ews ist o ankin o] f ( ) f

, Y o
About 1,200,000,000 results (0.48 secon ds)

y=3
On the Consistency of Top-£ Surrogate Losses YKICML 20
. . . 1
surrogates, which are uncalibrated. Thus, we conjecture that
no convex, piecewise affine loss is top-k calibrated.
cner
L1y v ' 0
m g Georgia State University
m =, ﬁﬂii? f—éear
elderbe R

PN
But we know top-k is embedded by a PLC surrogate... and PLC embedding implies consistent (calibrated) @

20



Q If Pr[pass] > 77
Q If Pr[pass] < ??

Analyzing (in)consistency for common decision tasks

PLC surrogates for top-k prediction (FFGT ICML 22) SVM generalizations for structured prediction
(NBR, ICML 20)

Weston-Watkins hinge embeds the ordered Lovasz hinge for structured prediction
partition (WS NeurlPS 20) (FFN COLT 22)




Analyzing fixed algorithms: beyond pointwise predictions

. ~
min 3! L. ) v X v ERCERE

QD reno .-
0 Q i P@, ) ...7

Challenges:
- Need to codify inherently abstract concepts

(x,y)

Goal: understand how fixed algorithms make
decisions in various settings

- Limitations on expressing utility



F23 arXiv

Sometimes algorithm is fixed

Q If Pr[pass] > 77
Q If Pr[pass] < 7?7

min (1 — A)loss(prediction, outcome) + A unfairness(prediction, outcome)

prediction

Unconstrained Constrained (IH) Constrained (FPR)

True probability decision dieciision decision

Ol

0.49
P @

X

23



~

F23 arXiv 0 If Pripass] > 27

How do fairness constraints change decisions?

(Theorem F23): Decision-making is the same for every distribution iff

the unfairness metric is “basically the same” as the loss L

Demographic Parity

24



F23 arXiv

~

Q If Pr[pass] > ??
Q If Pr[pass] < 77?7

How do fairness constraints change decisions?

(Theorem F23): Decision-making is the same for every distribution iff

the unfairness metric is “basically the same” as the loss L

(r.a)

(reject, reject)

Yaccept,accept)

(ar)
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Demographic Parity
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F23 arXiv

Comparing unfairness metrics

DP violation

(r.a) E
E(accept,acoept)

(reject, reject)

(ar)

06 1

051

04

03 1

02

01

00 1

Demographic Parity

DP violation as a function of pg (ps=0.3)
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Beyond today's talk: research

Machine Learning/Al Algorithmic Game Theory

Bridging Fairness in|  Impacts of fairness Voting algorithms | Robustness of predict- | Résource allocation
Machine Learning |constraints in information| \vith anchoring bias || then-optimize algorithms with inequality-

and Mechanism sharing CF in submission | JFWSVTT23 GameSec |averse communities
Design SFMNRJ23 AAAI SFA in submission

FMMPRST21 FAccT Holistically analyzing decisions made by fixed algorithms

Q If Pr[pass] > 0.75
e If Pr[pass] < 0.75

Designing objective and decision functions

‘

min ) L(h(x). y)

he#
(x,y)

Computational challenges
around loss efficiency
FFW20 COLT, FFW21

NeurlPS

Convex losses for
continuous decisions
FF18 NeurlPS ?’

Designing decision functions | Learning to cooperate in
for structured prediction competitive games
FFN22 COLT FM20 IEEE ToG




Beyond research: outreach and
mentorship

MDA4SG

Mechanism Design for Social Good

Welcome

Hi, I'm Jessie! (Pronouns: she/her; pronounced: Jeh-see Fin-uh-car-oh)

Community engagement lead Chair, vice-chair

Working group on fairness and discrimination co-lead Neural network .‘ ! | | Blah blah blah
Piloting PhD applicant feedback Jessle Pinoeehiare.
pI’Ogram Fellow

Cambridge, MA

= Email

. ;::::: I'm happy to chat about careers in research and my experience as a PhD student and postdoc.
However, | sadly cannot meet with everyone who emails me; if we're not already acquainted,
please add “Marshfield” to the subject line and please add a few words about why you're
emailing me in particular.

= Google Scholar

© ORCID

%'sv

UEER in Al PhD App mentorship and general Q+A!

PhD App mentorship PhD App mentorship PhD App mentorship
AAAIl 2023 invited talk

28



Optimization design is a value choice, often made
difficult by computational costs.

My work designs objectives that aligns with stated
values and evaluates the consequences of objective
choice on algorithmic decision-making.



Future work

Understand consequences of objective function choice

~ S

Q If Pr[pass] > 0.75

3 S

OGS Tunctions

min )" L(h(x). y)

he#H
(x,y)

5 and limitations of usin. “s nart

Understand how to incorporate value choices into algorithm design

30



Understand consequences of objective function choice

Design algorithms to maximize... But what if utilities are actually...?

u}x('.x) —a Inequality(’kﬁ&m
+

u,ﬁ(’A.-/) —a Inequality(kﬁ&k)
+

ua.'(a;) —a Inequality(:xﬁ&k)
+
uk (k )—«a Inequality(ﬁﬁ&k)

SFA in submission




Future work: Understand how to incorporate value choices into algorithm design

Table 1,
Private Forest Land Protection Criteria, 2020

Criteria Priority
Water Quality/Quantity
Wildlife Habitat

Growth/Sprawl Control

Large Continuous Forest
Wetland/Riparian Areas

min )’ L(h(x). y)

he#

(x,y)

Unique Ecological Areas

Wildfire Control Issues

Private Property Rights

Forest Timber Products

=IO | O] N N|PH|W[IN|F—

Lifestyle Protection for Landowner

https://csfs.colostate.edu/wp-content/uploads/2020/11/
FINAL2020_FLP_AON-.pdf https://co-pub.coloradoforestatlas.org/#/

32



Future work: Understand advantages and limitationss of using “smart” loss functions

Clever loss functions

help a lot Don’t need clever

loss functions!

Model size

Training data size

Complexity of
decision

33



Optimization design is a value choice, often made

difficult by computational costs.
| Q If Pr[pass] > 0.75

Q If Pr[pass] < 0.75

Collaborations

with you!

Thank you

A Wealthfront o
www.jessiefin.com

Handbook of Computational Social Choice https://www.wealthfront.com/
BCELP 2016 34






A
CF IJCAI24 Q
If Pr[pass] > ?7?

Q f Pripass] < 27
Analyzing fixed algorithms: beyond prediction

oY &
u = (0.3,0.25,0.45) ~~ .

2 u =(0.350.2,0.45)
’ voﬁng rule(vates) Borda vote
9 u = (0.35,0.15,0.5)

u = (0.8,0.15,0.05)
u = (0.9,0.04,0.06) @ oot

36

Majority vote




CF in progress | - o
N TR Q If Pr[pass] = 7?7

Analyzing fixed algorithms with anchored play

How do algorithmic decisions change when inputs (peoples opinions) shift according to anchored preferences?

Democratic Registered Voters
Democratic Primary 2024

Looking ahead to the 2024 presidential election, who would you support as the 2024 Democratic
presidential nominee?
Joe Biden I c5%
Bernie Sanders 1 3%
Kamala Harris I 1%
Pete Buttigieg GG 10%
Gavin Newsom I 5%
Elizabeth Warren G 5%
Gretchen Whitmer [N 2%
Josh Shapiro I 2%
Don't know 12%
None © 0%
Other 1%

https://www.ipsos.com/en-us/trump-leads-republican-
primary-field-biden-leads-democrats

37
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CF in progress :
Q If Pr[pass] > 77
Irj'l_iy_l Z L(h(x),y)

Q f Pripass] < 27
Analyzing fixed algorithms with social play

(Proposition CF23): Individual votes align more closely with the anchoring point

Change in voles: jokes dataset, plurality, a=0.05 Change in voles: jokes dataset, veto, a=0.05 Change in votes: jokes dataset, borda, a =005

101 2] 15105758

1.0.0) 9.1
021]
1102
(0 1.0) 1.0 1.)
(120]
201]
0 0.1) 1.1 0]
1210
0. 1.1) 11.0.1) L. 0] 012 021} 102] (120) 1201 1210)

(Theorem CF23): Borda is more robust to external information than plurality

38



Q If Pr[pass] = 0.75

Q If Pr[pass] < 0.75

Why do we need to construct a decision function

Theorem (FFW19): If a PLC surrogates L embeds 7, there exists a decision function dec
such that (L, dec) is consistent with respect to ¢

Need dec defined over all of R?

Red Blue Yellow ‘
embedding
Red 0 1 1 /\
Blue 1 0 1 {red, blue, yellow} — R?
Yellow 1 1 0

39



Constructing a consistent decision function

Theorem (FFW19): If a PLC surrogates L embeds £, there exists a decision function dec such that
(L, dec) is consistent with respect to £

Consistency focused on approaching the optimum
Embedding focuses on the exact minimizer




Dimensional efficiency

Most “naive” losses are score-based: d = number of alternatives.

L:RY> R
Roughly: complexity of gradient computation linear in d

d dimensions needed for consistent
d smaller —> better

surrogate:
M<d<n-1

41



Handcrafted surrogates in the wild: what do they embed?

Analyzing consistency via embeddings In image segmentation

|[{i: =y} num. correct pixels

L(r,y) =

[{i:v,=1}uli:r,#y}|  num. foreground or incorrect

k pixels: L : R¥ x 2¥ — R inconsistent

k
L : R? x 2% 5 R consistent

Note: didn’t construct consistent
surrogate because of dimension

Future work: trade off consistency for efficiency?

42



FFW COLT 2020 (not embeddings: FFW NeurlPS 2021)

Function I' makes

decision I'(h(z))

Thread 1

Thread 2

Predictive algorithm returns

h(z) = argminy, L(h/(z),y)

Lower bounds on prediction dimension from the property

Convex flats depend on global features of property rather than local to improve lower bounds

Truncated mean

Hi%-confidence classification

2 <d <L log,(n)

43

Classification




Future work: trading off consistency and efficiency

d < log,(n) n—1<d d = log,(n) and usually makes right
decision, but not always

44



Future work: When to predict more granular information?

Access to property value, can (noisily) predict more granular information. How to trade off noise in prediction vs

| Will graduate

/’\_j_/\ ', Predict, even if noisy

} Will graduate

45



Future work: Wildf

Knowing how predictions are
used to prescribe burns, how do
we design predictive algorithms
for fire intensity?

Table 1,
Private Forest Land Protection Criteria, 2020

Criteria Priority

Water Quality/Quantity
Wildlife Habitat

Growth/Sprawl Control

Large Continuous Forest
Wetland/Riparian Areas

Unique Ecological Areas

Wildfire Control Issues

Private Property Rights

Forest Timber Products

O XA N NP |WIDN|—

Lifestyle Protection for Landowner

[
O

https://csfs.colostate.edu/wp-content/
uploads/2020/11/
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Ire risk prediction
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Decisions —> Algorithms: Wildfire risk prediction

Increase in
average and
extreme
temperatures

Table 1,
Private Forest Land Protection Criteria, 2020

Variability in
timing and
easonality of
precipitation

capactty of Criteria Priority
ecosystgtr;wtss
e Water Quality/Quantity 1
Wildlife Habitat p)
Growth/Sprawl Control 3
Large Continuous Forest 4
Climate Change Risk Matrix —
& Wetland/Riparian Areas 5
Unique Ecological Areas 6
Negligible Minor Moderate Major Severe Wlldﬁre ContrOl ISSUCS 7
Private Property Rights 8
Very Likely | Med.low  Medium  Med. High
Forest Timber Products 0
z Med.low  Medium  Med. High Lifestyle Protection for Landowner | 1()
g Possible Med.Low  Medium  Med. High Med. High [
Unlikely Med.low Med.Low Medium  Med. High https://csfs.colostate.edu/wp-content/uploads/2020/11/FINAL2020_FLP_AON-.pdf
Very Unlikely Med.low  Medium  Med. High

https://cdphe.colorado.gov/clean-water-gis-maps

https://co-pub.coloradoforestatlas.org/#/
47



