Algorithm design for improved decision-making

Jessie Finocchiaro

Algorithmic predictions are used to make decisions

https://armman.org/

Wealthfront

https://www.theguardian.com/commentisfree/2020/aug/19/its-not-just-alevels-algorithms-have-a-nightmarish-new-power-over-our-lives

https://www.wealthfront.com/

Train ML model to learn *h** based on historical data

Demographics Past test scores School information Folk wisdom: we can make better decisions with "less" if we just predict *dec*(*pred*)

Data (*x*, *y*)

Why predict decisions?

Challenges: - Lots of decision problems! - *How to construct* good loss functions?

Goal: design algorithms (loss functions) that incorporate decision problem to make "smarter" errors

Outline

Algorithms making predictions

Algorithm design: incorporating decision structure

 \bullet $L(h(x), y)$ min *^h*∈ℋ∑ (*x*,*y*)

If $Pr[pass] < 0.75$

What is a decision task: common structure?

7

Ranking:

$\textbf{Today: discrete decisions}$ (FFW NeurIPS 19→JMLR, FFGT ICML 22, FFN COLT 22)

Segmenta

Continuous decisions (FF NeurlPS 18, FFW NeurlPS 21)

https://www.freecodecamp.org/news/chihuahua-or-muffin-my-search-for-the-best-

https://waymo.com/open/challenges/2021/real-time-2d-prediction/#

Common structure: decision loss matrix

 $u \in \mathbb{R}$

Decision loss $ℓ$ easy (relatively) to analyze, but intractable to optimize.

$$
\ell(r, y) = \ell_{r, y}
$$

dec : ℝ → ℛ

Good losses: consistent and convex

A surrogate loss L and decision dec pair (L, dec) is <u>consistent</u> with respect to a decision loss ℓ if minimizing the expected surrogate loss L then applying dec yields the same decision as minimizing expected ℓ directly

Challenge: for a given decision task, design *one* surrogate loss and decision pair that works *for all* data distributions

 $u \in \mathbb{R}$

Example: L logistic loss, hinge loss, squared loss $dec =$ sign ℓ is 0-1 loss

Good losses: consistent and convex

Convex:

If decisions are *discrete,* but \mathbb{R}^d is *infinite, w*hat do we do in the infinite space in between?

Consistency: *around* the minimizer

Our contributions

Our proposal: a framework to analyze the consistency of piecewise linear and convex (PLC) surrogates for discrete decision losses

embeddings and show embedding and consistency and the set of the s
 $\begin{array}{ccc} \text{Show embedding} & \rightarrow & \text{consistency} \\ \text{inomial} & \text{S} & \text{S} & \text{S} \\ \end{array}$

Introduce the definition of

A *much simpler* tool for analyzing consistency

Decision loss $\ell : \mathcal{R} \times \mathcal{Y} \to \mathbb{R}_+$

embeds a if there exists an if there exists an $embedding : \mathcal{R} \rightarrow \mathbb{R}^d$...

Hinge loss embeds (twice) 0-1 loss

Surrogate loss $L: \mathbb{R}^d \times \mathcal{U} \to \mathbb{R}_+$

y

embedding(No) embedding(Yes)

No optimal Yes optimal

1

2

if there exists an $embedding : \mathcal{R} \rightarrow \mathbb{R}^d$...

loss can be embedded by a PLC loss

PLC embeddings

Piecewise linear and

Theorem (FFW19): Every (PLC) surrogate embeds a decision loss

Since \underline{L} is piecewise linear and concave, its hypograph $hypo(\underline{L})$ has finitely many facets. For each facet F , pick one report u such that $\langle u, p \rangle$ supports $hypo(\underline{L})$ on $F.$ Add the row $\{L(u, y) \mid y \in \mathscr{Y}\}$ to the decision loss matrix.

> Is it an embedding? Match loss values: by construction $\sqrt{}$ Match optimality: Bayes risks match, which means optimality matches $\sqrt{}$

Theorem (FFW19): Every (PLC) surrogate embeds a decision loss

Theorem (**F**FW19): Every decision loss can be embedded by a PLC loss

Piecewise linear and convex (PLC) surrogate discussed by the Decision loss of the Decision loss

Theorem (FFW19): Every (PLC) surrogate embeds a decision loss

PLC embeddings

Analyzing fixed *embeddings*

Analyzing inconsistency of proposed embeddings

If $Pr[pass] \geq ?$? If $Pr[pass] < ?$?

PLC surrogates for top-*k* prediction (**F**FGT ICML 22)

Lovász hinge for structured prediction (**F**FN COLT 22)

If $Pr[pass] \geq ?$? If $Pr[pass] < ??$

Weston-Watkins hinge embeds the ordered partition (WS NeurIPS 20)

SVM generalizations for structured prediction (NBR, ICML 20)

Analyzing fixed algorithms: beyond pointwise predictions

 $\min_{\text{rediction}} (1 - \lambda) \text{loss}(\text{prediction}, \text{outcome}) + \lambda \text{ unfairness}(\text{prediction}, \text{outcome})$ *prediction prediction*

Sometimes algorithm is fixed

If $Pr[pass] \geq ??$ If $Pr[pass] < ?$?

F23 arXiv

Demographic Parity

How do fairness constraints change decisions?

If Pr[pass] \geq ?? If $Pr[pass] < ?$?

(**Theorem F23**): Decision-making is the same for every distribution iff the unfairness metric is "basically the same" as the loss *L*

Pr

 $\overline{}$

Y

=

 $\overline{}$

∣]

How do fairness constraints change decisions?

(**Theorem F23**): Decision-making is the same for every distribution iff the unfairness metric is "basically the same" as the loss *L*

Demographic Parity

Comparing unfairness metrics

Demographic Parity

False Positive Rates

Equalized Odds

False Negative Rates

ىا

If Pr[pass] \geq ?? If $Pr[pass] < 2$?

Beyond today's talk: research

Designing objective and decision functions

Holistically analyzing decisions made by fixed algorithms

Convex losses for continuous decisions **F**F18 NeurIPS

Voting algorithms with anchoring bias CE in submission

Computational challenges around loss efficiency **F**FW20 COLT, **F**FW21 NeurIPS

Machine Learning/AI and the Contract of Algorithmic Game Theory

Learning to cooperate in competitive games **F**M20 IEEE ToG

Designing decision functions for structured prediction **F**FN22 COLT

Bridging Fairness in Machine Learning and Mechanism Design **F**MMPRST21 FAccT

Resource allocation with inequalityaverse communities S**F**A in submission

If $Pr[pass] < 0.75$

Robustness of predictthen-optimize algorithms J**F**WSVTT23 GameSec

Impacts of fairness constraints in information sharing S**F**MNRJ23 AAAI

Beyond research: outreach and mentorship <u> Timba di Indonesia di San Tanzani </u>

MD45G Mechanism Design for Social Good

PhD App mentorship AAAI 2023 invited talk v

PhD App mentorship PhD App mentorship

Community engagement lead Working group on fairness and discrimination co-lead Chair, vice-chair,

PhD App mentorship and general Q+A!

Neural network Piloting PhD applicant feedback

program

QUEER in AI

Optimization design is a *value choice*, often made difficult by *computational costs*.

My work *designs objectives* that aligns with stated values and *evaluates the consequences* of objective choice on algorithmic decision-making.

Future work

Understand consequences of objective function choice

Understand how to incorporate value choices into algorithm design

Understand consequences of objective function choice

Design algorithms to maximize... **But what if utilities are actually...?** But what if utilities are actually...?

S**F**A in submission

Future work: Understand how to incorporate value choices into algorithm design

Table 1, Private Forest Land Protection Criteria, 2020

https://co-pub.coloradoforestatlas.org/#/

https://csfs.colostate.edu/wp-content/uploads/2020/11/ FINAL2020_FLP_AON-.pdf

min

Future work: Understand advantages and limitationss of using "smart" loss functions

Model size

Training data size

Complexity of decision

Don't need clever loss functions!

Clever loss functions help a lot

Optimization design is a *value choice*, often made difficult by *computational costs*.

Thank you www.jessiefin.com

<u>Al Wealthfront</u>

Handbook of Computational Social Choice https://www.wealthfront.com/ BCELP 2016

 $\sum L(h(x), y)$ If Pr[pass] ≥ 0.75

Collaborations with you!

^h∈ℋ∑

(*x*,*y*)

L(*h*(*x*), *y*)

Appendix

If $Pr[pass] \geq ?$? If $Pr[pass] < ?$?

CO

 \bullet

- $u = (0.35, 0.15, 0.5)$
- $u = (0.8, 0.15, 0.05)$
- $u = (0.9, 0.04, 0.06)$

How do algorithmic decisions change when inputs (peoples opinions) shift according to anchored preferences?

Democratic Registered Voters

Democratic Primary 2024

Looking ahead to the 2024 presidential election, who would you support as the 2024 Democratic presidential nominee?

https://www.ipsos.com/en-us/trump-leads-republicanprimary-field-biden-leads-democrats

Analyzing fixed algorithms with anchored play

Analyzing fixed algorithms with social play

 $[012] +$ $[0 2 1]$ 9933.0 -0.0 $0₀$ $[102]$ 7256.0 $[1 2 0]$ 316.0 7959.0 -0.0 253.0 -0.0 6573.0 $[201]$ 00. 67610 $[2 1 0]$ 129.0 $[012]$ $[021]$ $[102]$ $[120]$ $[201]$ $[210]$

Change in votes: jokes dataset, borda, $\alpha = 0.05$

 $\min_{h \in \mathcal{H}} \sum_{(x,y)} L(h(x), y)$

If Pr[pass] \geq ?? If $Pr[pass] < ?$?

(**Proposition CF23)**: Individual votes align more closely with the anchoring point

(Theorem C**F**23): Borda is more robust to external information than plurality

Why do we need to construct a decision function

Constructing a consistent decision function

 $\bm{\texttt{Theorem}}$ (EFW19): If a PLC surrogates L embeds ℓ , there exists a decision function dec such that $\bm{\cdot}$ (L,dec) is consistent with respect to ℓ^2

Consistency focused on *approaching* the optimum Embedding focuses on the *exact minimizer*

ϵ

┕╱┙

Dimensional efficiency

Roughly: complexity of gradient computation linear in d d smaller $\boldsymbol{-}$ > better $L: \mathbb{R}^d \to \mathbb{R}$

Most "naive" losses are score-based: $d =$ number of alternatives.

 $d = 1$ $d = 2$

Analyzing consistency via embeddings in image segmentation

Note: didn't construct consistent surrogate because of dimension

Future work: trade off consistency for efficiency?

$$
\ell(r, y) = \frac{|\{i : r_i = y_i\}|}{|\{i : y_i = 1\} \cup \{i : r_i \neq y_i\}|} = \frac{nu}{num \text{ for } n = 1, 2, \dots, n = 1, 2, \dots, n = 1, 3, \dots, n = 1,
$$

k pixels: $L: \mathbb{R}^k \times 2^k \rightarrow \mathbb{R}$ inconsistent

 $L: \mathbb{R}^{2^k} \times 2^k \to \mathbb{R}$ consistent

um. correct pixels

oreground or incorrect

Lower bounds on prediction dimension from the property

Convex flats depend on *global* features of property rather than *local* to improve lower bounds

a-confidence classification classification classification

$$
\leq d \leq \log_2(n)
$$

n − 1 ≤ *d* ≤ *n* − 1

Future work: trading off consistency and efficiency

 $\boldsymbol{2}$ 3

 $n-1 \le d$ *d* $d = \log_2(n)$ and *usually* makes right decision, but not always

Future work: When to predict more granular information?

Access to property value, can (noisily) predict more granular information. How to trade off noise in prediction vs

https://csfs.colostate.edu/wp-content/ uploads/2020/11/

Future work: Wildfire risk prediction

https://co-pub.coloradoforestatlas.org/#/

Knowing how predictions are used to prescribe burns, how do we design predictive algorithms for fire intensity?

> Table 1, Private Forest Land Protection Criteria, 2020

Decisions —> Algorithms: Wildfire risk prediction

Climate Change Risk Matrix

https://csfs.colostate.edu/wp-content/uploads/2020/11/FINAL2020_FLP_AON-.pdf

https://cdphe.colorado.gov/clean-water-gis-maps

Table 1, Private Forest Land Protection Criteria, 2020