Algorithm design for improved decision-making

Jessie Finocchiaro

Algorithmic predictions are used to make decisions

https://armman.org/

Wealthfront

https://www.wealthfront.com/

https://www.theguardian.com/commentisfree/2020/aug/19/its-not-just-alevels-algorithms-have-a-nightmarish-new-power-over-our-lives

Data (x, y)

Demographics Past test scores School information

Train ML model to learn h^* based on historical data

Folk wisdom: we can make better decisions with "less" if we just predict dec(pred)

Why predict decisions?

Goal: design algorithms (loss functions) that incorporate decision problem to make "smarter" errors

Challenges: - Lots of decision problems! *How to construct* good loss functions?

Outline

Algorithms making predictions

 \bullet $\min_{h \in \mathcal{H}} \sum_{(x,y)} L(h(x), y)$ (x,y)

Algorithm design: incorporating decision structure

 $\min_{h \in \mathcal{H}}$ L(h(x), y)(x,y)

If Pr[pass] < 0.75

What is a decision task: common structure?

Ranking:

Today: discrete decisions (FFW NeurIPS 19→JMLR, FFGT ICML 22, FFN COLT 22)

Segmenta

Continuous decisions (FF NeurIPS 18, FFW NeurIPS 21)

https://waymo.com/open/challenges/2021/real-time-2d-prediction/#

Classification:

7

r[pass]	\geq	0.75
r[pass]	<	0.75

ch-for-the-bestcbda4d6b425d/

Common structure: decision loss matrix

$$\ell(r, y) = \ell_{r, y}$$

	y=1	y=-1	$\mathbb{E}_{Y \sim p} L$
r=1	0	1	
r=-1	1	0	

Decision loss ℓ easy (relatively) to analyze, but intractable to optimize.

 $u \in \mathbb{R}$

Good losses: consistent and convex

A surrogate loss L and decision dec pair (L, dec) is <u>consistent</u> with respect to a decision loss ℓ if minimizing the expected surrogate loss L then applying dec yields the same decision as minimizing expected ℓ directly

Challenge: for a given decision task, design *one* surrogate loss and decision pair that works *for all* data distributions

 $u \in \mathbb{R}$

Example: L logistic loss, hinge loss, squared loss dec = sign ℓ is 0-1 loss

Good losses: consistent and convex

Convex:

If decisions are <u>discrete</u>, but \mathbb{R}^d is <u>infinite</u>, what do we do in the infinite space in between?

Consistency: <u>around</u> the minimizer

r[pass]	\geq	0.75
Pr[pass]	<	0.75

Our contributions

Our proposal: a framework to analyze the consistency of piecewise linear and convex (PLC) surrogates for discrete decision losses

Introduce the definition of embeddings

A much simpler tool for analyzing consistency

Show embedding \implies consistency

r[pass]	\geq	0.75
Pr[pass]	<	0.75

Hinge loss embeds (twice) 0-1 loss

Surrogate loss $L: \mathbb{R}^d \times \mathscr{Y} \to \mathbb{R}_+$

embeds a

Decision loss $\ell: \mathscr{R} \times \mathscr{Y} \to \mathbb{R}_+$

if there exists an embedding : $\mathscr{R} \to \mathbb{R}^d$...

	Y = 1	Y = -1
Yes	0	1
Νο	1	0

r[pass]	≥ 0.75
Pr[pass]	< 0.75

Hinge los	ss em	beds (1	
$\begin{array}{c} \text{Surrogate lo} \\ L: \mathbb{R}^d \times \mathscr{Y} \rightarrow \end{array}$	ss R ₊	embeds a	
2. Optimal reports match on embeddings	Y = 1	Y = -1	
Yes	0	1	
Νο	1	0	
Let p be $\Pr[Y = 1]$. Then $1 - p = \Pr[Y =$			
$\mathbb{E}_{Y \sim p} \ell(Yes, Y) = \sum_{y} p_{y} \ell(Yes)$	$(x, y) = 0 \times p + (1 - y)$	$p) \times 1 = 1 - p$	
$\mathbb{E}_{Y \sim p} \ell(No, Y) = \sum p_{y} \ell(No, Y)$	$, y) = 1 \times p + 0 \times (2$	(1-p) = p	

$\min_{h\in\mathscr{H}}\sum_{(x,y)}\frac{L(h(x),y)}{L(h(x),y)}$ twice) 0-1 loss

Decision loss $\ell: \mathscr{R} \times \mathscr{Y} \to \mathbb{R}_+$

if there exists an embedding : $\mathcal{R} \to \mathbb{R}^d$...

No optimal Yes optimal

embedding(Yes)

embedding(No)

\checkmark	If Pr[pass] \geq 0.75
$\boldsymbol{\times}$	If Pr[pass] < 0.75

PLC embeddings

Piecewise linear and convex (PLC) surrogate

loss can be embedded by a PLC loss

r[pass]	\geq	0.75
Pr[pass]	<	0.75

<u>Theorem (FFW19): Every (PLC) surrogate</u> embeds a decision loss

)	If Pr[pass] ≥ 0.75
)	If Pr[pass] < 0.75

Theorem (FFW19): Every (PLC) surrogate embeds a decision loss

Since <u>L</u> is piecewise linear and concave, its hypograph hypo(L) has finitely many facets. For each facet F, pick one report u such that $\langle u, p \rangle$ supports hypo(L) on F. Add the row $\{L(u, y) \mid y \in \mathcal{Y}\}$ to the decision loss matrix.

Is it an embedding? Match loss values: by construction 🗸 Match optimality: Bayes risks match, which means optimality matches √

PLC embeddings

Theorem (FFW19): Every (PLC) surrogate embeds a decision loss

Piecewise linear and convex (PLC) surrogate

<u>Theorem (F</u>FW19): Every decision loss can be embedded by a PLC loss

Decision loss

r[pass]	\geq	0.75
Pr[pass]	<	0.75

Analyzing fixed embeddings

Analyzing inconsistency of proposed embeddings

d loss	Desired	d decis		
Y = -1		Y = 1	Y = -1	
2	Yes	0	1	
0	Νο	1	0	
1 Y = -1		Y = 1	Y = -1	
1 1/3	Yes	0	1	
0	Νο	1	0	

If Pr[pass] \geq ?? If Pr[pass] < ??

PLC surrogates for top-k prediction (FFGT ICML 22)

Weston-Watkins hinge embeds the ordered partition (WS NeurIPS 20)

SVM generalizations for structured prediction (NBR, ICML 20)

Lovász hinge for structured prediction (<u>FFN COLT 22</u>)

If $Pr[pass] \ge ??$ If Pr[pass] < ??

Analyzing fixed algorithms: beyond pointwise predictions

F23 arXiv

Sometimes algorithm is fixed

min $(1 - \lambda)loss(prediction, outcome) + \lambda$ unfairness(prediction, outcome) prediction

"True probability"

00572

0.**4**9

e

If Pr[pass] \geq ?? If Pr[pass] < ??

How do fairness constraints change decisions?

(Theorem F23): Decision-making is the same for every distribution iff the unfairness metric is "basically the same" as the loss L

Pr

Demographic Parity

If $Pr[pass] \ge ??$ If Pr[pass] < ??

How do fairness constraints change decisions?

(Theorem F23): Decision-making is the same for every distribution iff the unfairness metric is "basically the same" as the loss L

Demographic Parity

Comparing unfairness metrics

Demographic Parity

False Positive Rates

Equalized Odds

False Negative Rates

b

If $Pr[pass] \ge ??$ If Pr[pass] < ??

Beyond today's talk: research

Machine Learning/Al

Bridging Fairness in Machine Learning and Mechanism Design **F**MMPRST21 FAccT

Impacts of fairness constraints in information sharing S<u>F</u>MNRJ23 AAAI

Voting algorithms with anchoring bias CF in submission

Holistically analyzing decisions made by fixed algorithms

Convex losses for continuous decisions **F**F18 NeurIPS

Computational challenges around loss efficiency **F**FW20 COLT, **F**FW21 NeurIPS

Algorithmic Game Theory

Robustness of predictthen-optimize algorithms JFWSVTT23 GameSec

Resource allocation with inequalityaverse communities SFA in submission

If $Pr[pass] \ge 0.75$

If Pr[pass] < 0.75

Designing objective and decision functions

Designing decision functions for structured prediction FFN22 COLT

Learning to cooperate in competitive games FM20 IEEE ToG

Beyond research: outreach and mentorship

MD4SG Mechanism Design for Social Good

Community engagement lead Working group on fairness and discrimination co-lead Chair, vice-chair,

Neural network Piloting PhD applicant feedback program

PhD App mentorship AAAI 2023 invited talk

PhD App mentorship

PhD App mentorship

PhD App mentorship and general Q+A!

Optimization design is a *value choice*, often made difficult by *computational costs*.

My work *designs objectives* that aligns with stated values and *evaluates the consequences* of objective choice on algorithmic decision-making.

Future work

Understand consequences of objective function choice

Understand how to incorporate value choices into algorithm design

Understand consequences of objective function choice

Design algorithms to maximize...

But what if utilities are actually...?

SFA in submission

Future work: Understand how to incorporate value choices into algorithm design

Table 1, Private Forest Land Protection Criteria, 2020

Criteria	Priority
Water Quality/Quantity	1
Wildlife Habitat	2
Growth/Sprawl Control	3
Large Continuous Forest	4
Wetland/Riparian Areas	5
Unique Ecological Areas	6
Wildfire Control Issues	7
Private Property Rights	8
Forest Timber Products	9
Lifestyle Protection for Landowner	10

https://csfs.colostate.edu/wp-content/uploads/2020/11/ FINAL2020_FLP_AON-.pdf

https://co-pub.coloradoforestatlas.org/#/

Clever loss functions help a lot

Model size

Training data size

Complexity of decision

Future work: Understand advantages and limitationss of using "smart" loss functions

Don't need clever loss functions!

Optimization design is a *value choice*, often made difficult by computational costs.

 $\min_{h \in \mathcal{H}} \sum_{x \in \mathcal{H}} L(h(x), y)$

(x,y)

Handbook of Computational Social Choice **BCELP 2016**

If $Pr[pass] \ge 0.75$

If Pr[pass] < 0.75

Collaborations with you!

Thank you www.jessiefin.com

Mealthfront

https://www.wealthfront.com/

Appendix

(==)

60

- u = (0.35, 0.2, 0.45)
- u = (0.35, 0.15, 0.5)
- u = (0.8, 0.15, 0.05)
- u = (0.9, 0.04, 0.06)

Veto vote

If Pr[pass] \geq ?? If Pr[pass] < ??

Analyzing fixed algorithms with anchored play

How do algorithmic decisions change when inputs (peoples opinions) shift according to anchored preferences?

 $\min_{h \in \mathscr{H}} \sum_{(x,y)} L(h(x), y)$

Democratic Registered Voters

Looking ahead to the 2024 presidential election, who would you support as the 2024 Democratic presidential nominee?

https://www.ipsos.com/en-us/trump-leads-republicanprimary-field-biden-leads-democrats

Democratic Primary 2024

Joe Bider Bernie Sanders Kamala Harris Pete Buttigieg Gavin Newsom Elizabeth Warre Gretchen Whitmer Josh Shapiro Don't know 12% None 0% Other 1% 2 - ⊕ lpace

(Proposition CF23): Individual votes align more closely with the anchoring point

Analyzing fixed algorithms with social play

Change in votes: jokes dataset, borda, $\alpha = 0.05$ 0121-[0 2 1] -9833.0 [102]-7256.0 [1 2 0] 7959.0 6573.0 [201] -6761.0 [210]-129.0 [012] [021] [102] [120] [201] [210]

 $\min_{h\in\mathscr{H}}\sum_{(x,y)}L(h(x),y)$

(<u>Theorem</u> C<u>F</u>23): Borda is more robust to external information than plurality

38

If $Pr[pass] \ge ??$ If Pr[pass] < ??

Why do we need to construct a decision function

Constructing a consistent decision function

Theorem (FFW19): If a PLC surrogates L embeds ℓ , there exists a decision function dec such that (L, dec) is consistent with respect to ℓ

Consistency focused on <u>approaching</u> the optimum Embedding focuses on the <u>exact minimizer</u>

 $\boldsymbol{\epsilon}$

r[pass]	\geq	0.75
Pr[pass]	<	0.75

Dimensional efficiency

 $L: \mathbb{R}^d \to \mathbb{R}$ Roughly: complexity of gradient computation linear in d d smaller —> better

d = 1

Most "naive" losses are score-based: d = number of alternatives.

d = 2

Analyzing consistency via embeddings in image segmentation

$$\ell(r, y) = \frac{|\{i : r_i = y_i\}|}{|\{i : y_i = 1\} \cup \{i : r_i \neq y_i\}|} = \frac{|v_i|}{|v_i|}$$

k pixels: $L : \mathbb{R}^k \times 2^k \to \mathbb{R}$ inconsistent

 $L: \mathbb{R}^{2^k} \times 2^k \to \mathbb{R}$ consistent

Note: didn't construct consistent surrogate because of dimension

Future work: trade off consistency for efficiency?

um. correct pixels

oreground or incorrect

Lower bounds on prediction dimension from the property

Convex flats depend on *global* features of property rather than *local* to improve lower bounds

2

-confidence classification

$$\leq d \leq \log_2(n)$$

Classification

 $n-1 \le d \le n-1$

Future work: trading off consistency and efficiency

 $d \le \log_2(n)$

 $d = \log_2(n)$ and *usually* makes right decision, but not always

Future work: When to predict more granular information?

Access to property value, can (noisily) predict more granular information. How to trade off noise in prediction vs

Predict, even if noisy

Future work: Wildfire risk prediction

Knowing how predictions are used to prescribe burns, how do we design predictive algorithms for fire intensity?

> Table 1, Private Forest Land Protection Criteria, 2020

Criteria	Priority
Water Quality/Quantity	1
Wildlife Habitat	2
Growth/Sprawl Control	3
Large Continuous Forest	4
Wetland/Riparian Areas	5
Unique Ecological Areas	6
Wildfire Control Issues	7
Private Property Rights	8
Forest Timber Products	9
Lifestyle Protection for Landowner	10

https://csfs.colostate.edu/wp-content/ uploads/2020/11/

https://co-pub.coloradoforestatlas.org/#/

Decisions —> Algorithms: Wildfire risk prediction

Climate Change Risk Matrix

		Severity of Impacts					
I		Negligible	Minor	Moderate	Major	Severe	
	Very Likely	Med. Low	Medium	Med. High	High	High	
hood	Likely	Low	Med. Low	Medium	Med. High	High	
Likeli	Possible	Low	Med. Low	Medium	Med. High	Med. High	
	Unlikely	Low	Med. Low	Med. Low	Medium	Med. High	
	Very Unlikely	Low	Low	Med. Low	Medium	Med. High	

Criteria	Priority
Water Quality/Quantity	1
Wildlife Habitat	2
Growth/Sprawl Control	3
Large Continuous Forest	4
Wetland/Riparian Areas	5
Unique Ecological Areas	6
Wildfire Control Issues	7
Private Property Rights	8
Forest Timber Products	9
Lifestyle Protection for Landowner	10

https://csfs.colostate.edu/wp-content/uploads/2020/11/FINAL2020_FLP_AON-.pdf

https://cdphe.colorado.gov/clean-water-gis-maps

Table 1, Private Forest Land Protection Criteria, 2020

