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I use tools from theoretical machine learning and algorithmic game theory to understand the relationship
between (predictive) algorithm design and algorithmic decision-making. Algorithmic predictions supplement
human and algorithmic decision-making in a variety of domains: predicted risk of disease leads to flagged scans
for additional review from medical professionals, predicted hyperparameters change physics models for simulator
design in engineering, and predicted market trends change investment strategies in quantitative finance. Such
algorithmic predictions are often made by training a model which minimizes some loss function measuring error,
and predictions are used to guide some downstream decision or recommendation. Approximately accurate
algorithmic predictions can often lead to poor decision-making and recommendations if these algorithms are
not able to make “smarter” errors when necessary.

For example, if, given a CT scan x, a patient’s true risk of disease is p∗(x)=0.06, then predictive models
h1(x) = 0.04 and h2(x) = 0.08 are both “equally inaccurate” in terms of squared error. Suppose a hospital’s
policy is to run more extensive tests if a model yields prediction h(x)>0.05, then h1 leads to no tests being
run, while h2 recommends additional tests. In this case, the decision made with h2 aligns with the decision
recommended by the true probability p∗(x), while h1 does not. Designing losses with this decision-like structure
allows the algorithm to distinguish between these cases, allowing the model to make predictive errors that less
starkly affect decision-making, as demonstrated in Figure 1.
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Figure 1: Example where the true risk is p∗(x)=0.06, and models h1
and h2 have equal squared loss (blue). However, if the hospital uses
predictions for decision-making, the stakes of these predictions change.
My goal is to develop principled loss functions that incorporate
decision-making processes into their structure, such as the loss in red.

Subtle challenges emerge when incorporating such structure into losses. Loss functions often need to balance
several desiderata; aligning the loss with decision task is often at odds with designing losses that are compu-
tationally tractable to minimize (e.g., convex). Historically, convex surrogate losses have been constructed in an
ad-hoc manner, and often do not align with the intended decision task, including surrogates for top-k prediction.
Conversely, feasibility or equity concerns conceptually require algorithm designers to modify the optimized loss,
but little work has characterized how various constraint formulations change decision-making. My research
agenda examines the bidirectional relationship between algorithm design and decision-making
in machine learning and algorithmic economics, and spans application settings ranging from resource
allocation, information retrieval, high-stakes classification, and uncertainty quantification, among others.

Thread 1: Decision-making to algorithm design. Given a decision problem, design a “good” loss (part of
the machine learning algorithm) that is statistically corresponds to the decision problem.

Thread 2: Algorithm design to decision-making. Given a fixed algorithm, examine how values embedded
into the algorithm change decision-making.

My work in these threads has received recognition through an NSF Graduate Research Fellowship, an
NSF Mathematical Sciences Postdoctoral Research Fellowship, and spotlight recognition at Neural Information
Processing Systems (NeurIPS), awarded to the top 4% of submissions [2].
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Figure 2: Thread 1 starts with a decision task
and studies the design of predictive algorithms
that correspond to said task, and Thread
2 examines the changes to decision-making
induced by modifying a given algorithm.

Page 1



Research Statement: Algorithm design for decision-making Jessie Finocchiaro

Thread 1: Designing “good” algorithms for given decision tasks

In supervised machine learning, empirical risk minimization is the dominant paradigm for learning from data.
Therein, one learns to predict by minimizing a surrogate loss function L :Rd×Y→R+ measuring the error of a
prediction u∈Rd against the observed outcome y∈Y, such as the hinge loss L(u,y)=(1−uy)+, as a surrogate for
binary classification. Ideally, minimizing this surrogate loss can be linked to making the correct decision for a given
decision task or target loss. A decision task is formalized either by a function Γ:∆Y→R mapping probability
distributions (over outcomes) to decisions inR or by a target loss ` :R×Y→R+ measuring the error of the report
r∈R against the outcome y∈Y. Examples of decision tasks include classification Γ(p)=argmaxy∈Ypy (the most
likely of outcomes in Y), structured prediction tasks on graphs, and estimating risk measures such as variance or
conditional value at risk, and target losses include 0-1 loss, least-squares regressions, Borda ranking losses, and cost-
sensitive classifications. Since algorithms optimize surrogates L :Rd×Y→R+ as a proxy for targets defined over
a possibly different setR, a link function ψ :Rd→R is often necessary to reason about decisions given predictions.
For example, the sign link ψ :u 7→sign(u) often accompanies the hinge loss as a surrogate for binary classification.
My work studies the design of surrogate losses and links that are (a) consistent for a given target problem:
for all sequences of models mapping features in X to predictions {hn :X →Rd} and all data distributions
D∈∆(X×Y), EDL(hn(X),Y )→ infhEDL(h(X),Y ) =⇒ED`(ψ◦hn(X),Y )→ infhED`(ψ◦h(X),Y ). Roughly
speaking, consistency means that minimizing the expected surrogate loss implies minimizing the expected target
loss or making the best decision possible when linking surrogate predictions by ψ. Moreover, we want (b)
convex surrogates, so that minimizing the surrogate loss function should be computationally tractable. In
the sequel, I give a brief overview of my research findings on constructing convex and consistent surrogates
in continuous estimation and discrete prediction settings; see Table 1 for the settings covered by each work.

Target loss Target decision
Discrete target e.g., binary classification [3–5, 8, 9] e.g., hierarchical classification [3, 5, 8, 9]
Continuous target e.g., least-squares regression [2, 5] e.g., variance estimation [2, 5]

Table 1: My work on constructing convex and consistent surrogate losses spans settings of both continuous and discrete
estimation tasks, and applies when given a reference decision task or target loss function.

Discrete prediction tasks When the decision problem is discrete, such as top-k selection, rankings, and
classification, constructing a convex surrogate loss function is less straightforward. Often, convex surrogates for
discrete decision tasks are carefully and laboriously handcrafted, yet in practice, established surrogates are often
inconsistent for the intended decision task. In [3], we develop the embeddings framework for designing consistent
and convex surrogate losses for general discrete prediction tasks. Intuitively, given a discrete decision task, one
can “embed” the possible decisions into the d-dimensional reals (Rd) via an embedding function ϕ :R→Rd and
“convexify” the space in between embedded reports. Using the convex conjugate, we construct a convex
(and piecewise linear) surrogate loss function that embeds a target loss or decision task. Theorem 1
in turn implies this constructed surrogate loss is consistent for the target problem.

Theorem 1 ([3, Theorem 2]) For any discrete target loss ` :R×Y→R+, there exists a piecewise linear and
convex surrogate L :Rd×Y→R+ and link ψ :Rd→R such that (L,ψ) is consistent with respect to `.

To prove Theorem 1, we characterize all possible consistent link functions ψ :Rd→R, the construction of which
is generally not intuitive. This link characterization enables one to analyze the consistency of any piecewise linear
and convex surrogate loss and link pair, and has been used to prove the inconsistency of proposed surrogates
for top-k classification [8], structured prediction [9], and the popular Weston-Watkins hinge for multiclass
classification [12], highlighting conditions when these surrogates may fail. Moreover, for top-k classification,
we construct a consistent surrogate and link, resolving a conjecture about its (non)existence [13].
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Thread 2: Algorithm design’s impact on decision-making

In consequential settings where predictions and decisions directly affect human livelihood, concerns surrounding
the fairness and justice of decisions are salient. Machine learning (e.g., predictive algorithms) and algorithmic
mechanism design (e.g., resource allocation algorithms) are becoming increasingly interconnected in algorithmic
decision-making pertaining to human livelihood (e.g., [11]). Fairness in this joint context is not well-studied,
as the approaches historically taken by the optimization and allocation communities differ substantially. In
[6, 7], we enumerate opportunities and lessons for the machine learning and resource allocation communities
to learn from each other, demonstrating these opportunities across five domains.

In predictive machine learning algorithms, constraints are often added to the objective function as a form
of regularization function; in some sense, these regularized losses are new, generally unscrutinized losses, and
the optimal decision they induce is unknown. My work characterizes when and how these modified
losses change the optimal decision, exemplified by considering fairness regularizers [1]. In examining how
fairness constraints change decision-making, we find that only fairness constraints that value “accuracy
as fairness” leave the optimal decision unchanged; examples of such constraints in binary classification
settings include calibration violations (the absolute difference) and bounded group loss constraints (reweighing
the original loss). Unsurprisingly, the converse implies that many group fairness metrics such as equalized false
positive rates and equality of opportunity change the optimal decision for certain outcome distributions; we
characterize spaces of data distributions where decisions remain unchanged.

Future work and conclusion
My past and ongoing work explores the relationship between (tractable) prediction and decision-making, and
I plan to further explore questions related to these threads.

T1: Decision → algorithm: trading off consistency and efficiency My previous work in the first
thread has focused on the design of efficient surrogate loss functions that are simultaneously convex and consistent
for every problem instance. If a decision maker has some prerequisite information about the problem, they may
be willing to trade off consistency for efficiency. I am interested in understanding how we can improve efficiency
if we only require consistency for practically relevant problem instances, rather than for every problem instance.

T1: Decision → algorithm: partnering with practitioners to design losses for spatial prediction
While the embeddings framework is very general, I have shown firsthand its practical use for designing tractable
algorithms for a variety of tasks. In particular, embeddings have tremendous untapped potential to improve
predictions in structured, spatial domains. I plan to apply the embeddings framework to spatial prediction
problems like risk prediction for wildfire risk (e.g., in Colorado) to inform decision-making around wildfire
management such as the assignment of prescribed burns. I have been a member of the Mechanism Design
for Social Good working group focusing on Conversations with Practitioners, through which I have learned
about developing and sustaining collaborations that are mutually beneficial for practitioners and marginalized
communities as well as researchers [10].

T2: Algorithm→ decision: learning when to predict I am interested in understanding when the use of
noisy predictive models is more beneficial to decision-making than a more reliable, but less granular, given statistic.
In many settings, predictive models are both expensive to build and error-prone, and decision-makers have access
to some summary statistic of the data that is both more accurate and less expensive to access, at the cost of gran-
ularity of information. In certain settings, predicting the more granular data can help the decision-maker distin-
guish between different instances that share the same value of the summary statistic. I plan to characterize when
a predictive algorithm yields better decisions than algorithms relying solely on summary statistics, and vice versa.

Conclusion I am interested in understanding the relationship between prediction and algorithmic decision-
making. My agenda is foundational, and contributes to understanding the design of predictive algorithms for
various decision tasks such as information retrieval, building recommender systems, and risk prediction for
allocating services such as cloud server storage or wildfire management services, among others.
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